EVALUASI PEMBELAJARAN DENGAN INTEGRASI TEKNOLOGI ARTIFICIAL INTELLIGENCE TERHADAP PENINGKATAN KUALITAS BELAJAR SISWA
DOI:
https://doi.org/10.30739/tarbiyatuna.v6i2.4396Keywords:
Artificial Intelligence, Integration Method, Learning Outcomes, Learning Evaluation, Conventional LearningAbstract
Abstract
This research emerged from the issue of the limited effectiveness of traditional learning approaches in improving students’ academic performance. The primary goal of this study is to quantitatively examine how far the integration of Artificial Intelligence (AI)–based learning methods can enhance students’ learning outcomes compared to conventional lecture techniques. A quantitative experimental design utilizing a pretest–posttest model was applied. Data were obtained through pretests and posttests and further analyzed using the Paired Sample t-test and Analysis of Covariance (ANCOVA) to determine differences and measure the influence of learning methods on achievement levels.
The results indicate a substantial improvement between the pretest and posttest scores, with a mean difference of -15.167 (t = -9.575; p < 0.001), confirming that posttest scores significantly increased after the intervention. The ANCOVA results further demonstrated that the applied learning method had a strong influence on posttest outcomes (F = 35.980; p < 0.001), while the pretest variable showed no significant effect (p = 0.497). Participants who engaged in AI-integrated learning achieved an average posttest score of 85.838, notably higher than the lecture group’s 75.729, with a 95% confidence interval verifying this difference. These findings emphasize that AI integration enhances learning personalization, comprehension, and engagement, thereby contributing positively to the overall improvement of learning outcomes compared to traditional methods.
Keywords: Artificial Intelligence, Integration Method, Learning Outcomes, Learning Evaluation, Conventional Learning
Abstrak
Penelitian ini berangkat dari permasalahan rendahnya efektivitas pendekatan pembelajaran konvensional dalam meningkatkan prestasi akademik peserta didik. Tujuan utama penelitian ini adalah untuk menganalisis secara kuantitatif sejauh mana penerapan metode pembelajaran yang terintegrasi dengan teknologi AI dapat memberikan dampak terhadap peningkatan hasil belajar dibandingkan dengan metode ceramah tradisional. Penelitian ini menggunakan rancangan eksperimen dengan model pretest–posttest melalui pendekatan kuantitatif. Data dikumpulkan menggunakan instrumen pretest dan posttest, kemudian dianalisis dengan uji Paired Sample t-test serta Analisis Kovarians (ANCOVA) untuk menilai perbedaan serta pengaruh metode pembelajaran terhadap capaian belajar peserta.
Hasil penelitian menunjukkan adanya peningkatan yang signifikan antara skor pretest dan posttest, dengan selisih rata-rata sebesar -15,167 (t = -9,575; p < 0,001), yang menandakan adanya peningkatan hasil belajar setelah penerapan intervensi. Hasil ANCOVA memperkuat temuan tersebut, di mana metode pembelajaran memiliki pengaruh signifikan terhadap skor posttest (F = 35,980; p < 0,001), sedangkan nilai pretest tidak menunjukkan pengaruh berarti (p = 0,497). Rata-rata nilai posttest kelompok yang belajar dengan integrasi AI mencapai 85,838, lebih tinggi dibandingkan dengan kelompok ceramah sebesar 75,729, dengan interval kepercayaan 95% yang mengonfirmasi perbedaan signifikan tersebut. Temuan ini menunjukkan bahwa penerapan teknologi AI dalam pembelajaran dapat meningkatkan personalisasi, pemahaman materi, serta keterlibatan siswa secara nyata, sehingga berdampak positif terhadap peningkatan hasil belajar dibandingkan metode konvensional.
Kata Kunci: Kecerdasan Buatan, Metode Integrasi, Hasil Belajar, Evaluasi Pembelajaran, Pembelajaran Konvensional
Downloads
References
Daftar Pustaka
Alasgarova, R., & Rzayev, J. (2024). The role of artificial intelligence in shaping high school students’ motivation. International Journal of Technology in Education and Science, 8(2), 311–324. https://doi.org/10.46328/ijtes.553
Asadi, M., Ebadi, S., Salman, A. R., Taheri, R., & Mohammadi, L. (2025). Investigating the effects of AI-assisted teacher instruction on online IELTS writing. Social Sciences & Humanities Open, 12, 101747. https://doi.org/10.1016/j.ssaho.2025.101747
Ayd?n, B., K??la, T., Elmas, N. T., & Bulut, O. (2025). Automated scoring in the era of artificial intelligence: An empirical study with Turkish essays. System, 133, 103784. https://doi.org/10.1016/j.system.2025.103784
Bariyyah, K., Soejanto, L. T., Latifah, L., Sari, E. K. W., & Ifdil, I. (2023). Enhancing educational quality during MBKM implementation. Jurnal Konseling dan Pendidikan, 11(1), 21–29. https://doi.org/10.29210/185300
Baroud, S., Alaoui, M. E., Idrissi, R. J., Boucetta, N., Ghariz, G., & Seghir, H. (2025). Improving biology learning in high school with ChatGPT: A case study in Morocco. Eurasia Journal of Mathematics, Science and Technology Education, 21(7), em2669. https://doi.org/10.29333/ejmste/16606
Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P., Chong, S. W., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1), 4. https://doi.org/10.1186/s41239-023-00436-z
Contrino, M. F., Reyes-Millán, M., Vázquez-Villegas, P., & Membrillo-Hernández, J. (2024). Using an adaptive learning tool to improve student performance and satisfaction in online and face-to-face education for a more personalized approach. Smart Learning Environments, 11(1), 6. https://doi.org/10.1186/s40561-024-00292-y
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
Dewi, A. U. (2021). Curriculum reform in the decentralization of education in Indonesia: Effect on students’ achievements. Jurnal Cakrawala Pendidikan, 40(1), 158–169. https://doi.org/10.21831/cp.v40i1.33821
Dongoran, M., Nasution, U. A., & Pane, D. A. (2024). Effectiveness of the use artificial intelligence on biology student learning UIN Syahada Padangsidimpuan. Bioedunis Journal, 3(2), 205–218. https://doi.org/10.24952/bioedunis.v3i2.13898
Ezzaim, A., Kharroubi, F., Dahbi, A., Aqqal, A., & Haidine, A. (2022). Artificial intelligence in education—State of the art. International Journal of Computer Engineering and Data Science (IJCEDS), 2(2). https://n2t.net/ark:/32155/IJCEDS.v2i2.37
Fadliansyah, M. R., Dwiyanto, R., & Syamsiyah, N. S. N. (2024). Evaluation of the use of artificial intelligence in teaching learning evaluation courses. Jurnal Evaluasi dan Pembelajaran, 6(2), 56–67. https://doi.org/10.52647/jep.v6i2.238
Garzón, J., Patiño, E., & Marulanda, C. (2025). Systematic review of artificial intelligence in education: Trends, benefits, and challenges. Multimodal Technologies and Interaction, 9(8), 84. https://doi.org/10.3390/mti9080084
Kasman, R. A., Judijanto, L., & Elmiwati, E. (2024). Artificial intelligence in the classroom: Innovation or disruption in education. Indonesian Journal of Education (INJOE), 4(3), 844–856.
Li, B. (2025). Exploring the impact of AI-enhanced classroom instruction on learning outcomes of college students. Journal of Electronic Research and Application, 9(3), 77–81. https://doi.org/10.26689/jera.v9i3.10820
Luo, J., Zheng, C., Yin, J., & Teo, H. H. (2025). Design and assessment of AI-based learning tools in higher education: A systematic review. International Journal of Educational Technology in Higher Education, 22(1), 42. https://doi.org/10.1186/s41239-025-00540-2
Mayasari, N., Sastraatmadja, A. H. M., Suparman, T., Mutiara, I. I., & Maqfirah, P. A.-V. (2024). Effectiveness of using artificial intelligence learning tools and customized curriculum on improving students’ critical thinking skills in Indonesia. The Eastasouth Journal of Learning and Educations, 2(2), 111–118. https://doi.org/10.58812/esle.v2i02.302
Nugroho, O. F., Hikmawaty, L., & Juwita, S. R. (2024). Artificial intelligence technology embedded in high school science learning: A study of teacher perception. Pedagonal: Jurnal Ilmiah Pendidikan, 8(2), 132–143. https://doi.org/10.55215/pedagonal.v8i2.16
Permatasari, N. I., Haq, M. S., & Hariyati, N. (2025). The influence of learning management and school climate on student learning outcomes at elementary schools in Karangpilang District. Jurnal Elementaria Edukasia, 8(3), 419–429. https://doi.org/10.31949/jee.v10i3.15067
Purnama, M. R., Adnyana, I. P. I. K., Sogen, A. T. L., Indrawan, G., & Santosa, M. H. (2025). Teacher’s readiness toward artificial intelligence in the school of North Bali. Jurnal Paedagogy, 12(1), 23–32. https://doi.org/10.33394/jp.v12i1.13707
Qushwa, F. G. (2023). Integration of artificial intelligence in online learning: Analyzing the impact on student learning outcomes. International Journal of Instructional Technology, 2(2), 11–21. https://doi.org/10.33650/ijit.v2i2.9328
Ramdhani, L. I., Triana, D. D., & Madani, F. (2024a). Enhancing student learning outcomes through formative assessment: A systematic literature review. Mimbar Ilmu, 29(3), 529–536. https://doi.org/10.23887/mi.v29i3.89840
Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1), 54. https://doi.org/10.1186/s41239-021-00292-9
Sholeh, M. I., Sokip, Syafi’i, A., & Sulistyorini. (2024). Artificial intelligence in education: Transforming assessment and personalized learning. Journal of Education and Learning Sciences, 4(1), 50–62. https://doi.org/10.56404/jels.v4i1.118
Sihaloho, F. A. S., & Napitupulu, Z. (2024). Penggunaan kecerdasan buatan (artificial intelligence) dalam dunia pendidikan di Indonesia: Tinjauan literatur. Rekognisi: Jurnal Pendidikan dan Kependidikan, 9(1), 13–20.
Son, T. (2024). Intelligent tutoring systems in mathematics education: A systematic literature review using the substitution, augmentation, modification, redefinition model. Computers, 13(10), 270. https://doi.org/10.3390/computers13100270
Sugianto, E. (2024a). Optimizing education management to improve learning quality. Jurnal Konseling Pendidikan Islam, 5(2), 312–321. https://doi.org/10.32806/jkpi.v5i2.190
Sugiarso, B. A., Nurjamin, A., Judijanto, L., Firdausiyah, L., & Hidayat, A. A. (2024). The effect of artificial intelligence in improving student learning achievement in high school. World Psychology, 3(1), 1–13. https://doi.org/10.55849/wp.v3i1.569
Sulistyono, N. J., Suparji, S., Wiyanto, T., Suhartini, R., & Ilham, I. (2024). Understanding AI usage in academics among vocational high school students. West Science Interdisciplinary Studies, 2(10), 1917–1927. https://doi.org/10.58812/wsis.v2i10.1318
Tohir, A., Muslim, S., & Situmorang, R. (2025). Integration of technology in learning: Enhancing higher order thinking skills (HOTS) in secondary school students. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3474
Trisoni, R., Ardiani, I., Herawati, S., Mudinillah, A., Maimori, R., Khairat, A., David, D., & Nazliati, N. (2023). The effect of artificial intelligence in improving student achievement in high schools (pp. 546–557). https://doi.org/10.2991/978-2-38476-142-5_50
Utami, S. P. T., Andayani, Winarni, R., & Sumarwati. (2023). Utilization of artificial intelligence technology in an academic writing class: How do Indonesian students perceive? Contemporary Educational Technology, 15(4), ep450. https://doi.org/10.30935/cedtech/13419
Verliyanti, V. (2025). Improving the quality of elementary teacher education learning through student activity-oriented learning strategies. Bulletin of Early Childhood, 4(1), 66–74. https://doi.org/10.51278/bec.v4i1.1998
Vieriu, A. M., & Petrea, G. (2025). The impact of artificial intelligence (AI) on students’ academic development. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343
Wakhidah, A., & Bandono, A. (2022). Strategies for improving the quality of learning outcomes in elementary schools. KnE Social Sciences, 7(10), 377–385. https://doi.org/10.18502/kss.v7i10.11240
Wandri, D., & Jalinus, N. (2022). Quality of e-learning learning during the COVID-19 pandemic. Jurnal Ilmiah Pendidikan Profesi Guru, 5(1), 77–85. https://doi.org/10.23887/jippg.v5i1.32201
Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167
Wondal, M. P., Mait, H. G. R., Yusupa, A., & Tarigan, V. (2025). Pengaruh penggunaan kecerdasan buatan (AI) dalam proses pembelajaran terhadap hasil belajar siswa sekolah menengah. Kohesi: Jurnal Sains dan Teknologi, 7(12), 31–40. https://doi.org/10.2238/qsj12x26
Zhao, L., Zhu, R., Cai, X., & Zhang, J. (2023). Improving sustainability of learning outcomes: An empirical study of medical students’ autonomous learning. Sustainability, 15(7), 5668. https://doi.org/10.3390/su15075668
Zhou, M., & Peng, S. (2025). The usage of AI in teaching and students’ creativity: The mediating role of learning engagement and the moderating role of AI literacy. Behavioral Sciences, 15(5), 587. https://doi.org/10.3390/bs15050587
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Hendra Wijaya Hendra, Hendro Prasetyono Prasetyono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in Jurnal Tarbiyatuna: Jurnal Kajian Pendidikan, Pemikiran dan Pengembangan Pendidikan Islam agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Licensethat allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).












